Sunday, October 27, 2013
SP #3: Unit I Concept 1: Graphing Exponential Functions
This picture shows how to solve and graph for exponential functions. This includes identifying the x-intercept (if there is any, not in this case), the y-intercept, the asymptote, domain, range, and plotting at least four points on the graph. The equation I chose is: f(x)=(.3)(.5^x+2)+7. "a"=.3; "b"=.5; "h"=-2; "k"=7. Because my pictures came out blurry (SORRY!) the 2nd picture reads "value of "a" is positive, so the graph will go ABOVE the asymptote".
It is important to know when there is no x-intercept: when the log is negative. When finding what "h" equals, it is never that same number expressed in the power (^x+2). "h" is actually -2, not +2 because, to find "h", we use the expression "x-h", therefore getting the opposite. "h" can be used as the 3rd key point on our table, and is therefore plotted on our graph. Also, the asymptote can't be touched at all.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment